Metamath Proof Explorer


Theorem rngo2

Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngo2 RRingOpsAXxXAGA=xGxHA

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoid RRingOpsAXxXxHA=AAHx=A
5 oveq12 xHA=AxHA=AxHAGxHA=AGA
6 5 anidms xHA=AxHAGxHA=AGA
7 6 eqcomd xHA=AAGA=xHAGxHA
8 simpll RRingOpsAXxXRRingOps
9 simpr RRingOpsAXxXxX
10 simplr RRingOpsAXxXAX
11 1 2 3 rngodir RRingOpsxXxXAXxGxHA=xHAGxHA
12 8 9 9 10 11 syl13anc RRingOpsAXxXxGxHA=xHAGxHA
13 12 eqeq2d RRingOpsAXxXAGA=xGxHAAGA=xHAGxHA
14 7 13 imbitrrid RRingOpsAXxXxHA=AAGA=xGxHA
15 14 adantrd RRingOpsAXxXxHA=AAHx=AAGA=xGxHA
16 15 reximdva RRingOpsAXxXxHA=AAHx=AxXAGA=xGxHA
17 4 16 mpd RRingOpsAXxXAGA=xGxHA