Metamath Proof Explorer


Theorem rngoi

Description: The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007) (Proof shortened by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngoi RRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 opeq12i GH=1stR2ndR
5 relrngo RelRingOps
6 1st2nd RelRingOpsRRingOpsR=1stR2ndR
7 5 6 mpan RRingOpsR=1stR2ndR
8 4 7 eqtr4id RRingOpsGH=R
9 id RRingOpsRRingOps
10 8 9 eqeltrd RRingOpsGHRingOps
11 2 fvexi HV
12 3 isrngo HVGHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
13 11 12 ax-mp GHRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
14 10 13 sylib RRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y