Metamath Proof Explorer


Theorem rninxp

Description: Two ways to express surjectivity of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion rninxp ranCA×B=ByBxAxCy

Proof

Step Hyp Ref Expression
1 dfss3 BranCAyByranCA
2 ssrnres BranCAranCA×B=B
3 df-ima CA=ranCA
4 3 eleq2i yCAyranCA
5 vex yV
6 5 elima yCAxAxCy
7 4 6 bitr3i yranCAxAxCy
8 7 ralbii yByranCAyBxAxCy
9 1 2 8 3bitr3i ranCA×B=ByBxAxCy