Metamath Proof Explorer


Theorem rniun

Description: The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion rniun ranxAB=xAranB

Proof

Step Hyp Ref Expression
1 rexcom4 xAyyzByxAyzB
2 vex zV
3 2 elrn2 zranByyzB
4 3 rexbii xAzranBxAyyzB
5 eliun yzxABxAyzB
6 5 exbii yyzxAByxAyzB
7 1 4 6 3bitr4ri yyzxABxAzranB
8 2 elrn2 zranxAByyzxAB
9 eliun zxAranBxAzranB
10 7 8 9 3bitr4i zranxABzxAranB
11 10 eqriv ranxAB=xAranB