Metamath Proof Explorer


Theorem rnmptbd2

Description: Boundness below of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rnmptbd2.x xφ
rnmptbd2.b φxABV
Assertion rnmptbd2 φyxAyByzranxAByz

Proof

Step Hyp Ref Expression
1 rnmptbd2.x xφ
2 rnmptbd2.b φxABV
3 breq1 y=wyBwB
4 3 ralbidv y=wxAyBxAwB
5 4 cbvrexvw yxAyBwxAwB
6 5 a1i φyxAyBwxAwB
7 1 2 rnmptbd2lem φwxAwBwuranxABwu
8 breq1 w=ywuyu
9 8 ralbidv w=yuranxABwuuranxAByu
10 breq2 u=zyuyz
11 10 cbvralvw uranxAByuzranxAByz
12 9 11 bitrdi w=yuranxABwuzranxAByz
13 12 cbvrexvw wuranxABwuyzranxAByz
14 13 a1i φwuranxABwuyzranxAByz
15 6 7 14 3bitrd φyxAyByzranxAByz