Metamath Proof Explorer


Theorem rnmptc

Description: Range of a constant function in maps-to notation. (Contributed by Glauco Siliprandi, 11-Dec-2019) Remove extra hypothesis. (Revised by SN, 17-Apr-2024)

Ref Expression
Hypotheses rnmptc.f F=xAB
rnmptc.a φA
Assertion rnmptc φranF=B

Proof

Step Hyp Ref Expression
1 rnmptc.f F=xAB
2 rnmptc.a φA
3 fconstmpt A×B=xAB
4 1 3 eqtr4i F=A×B
5 4 rneqi ranF=ranA×B
6 rnxp AranA×B=B
7 5 6 eqtrid AranF=B
8 2 7 syl φranF=B