Metamath Proof Explorer


Theorem rnmptcOLD

Description: Obsolete version of rnmptc as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses rnmptcOLD.f F=xAB
rnmptcOLD.b φxABC
rnmptcOLD.a φA
Assertion rnmptcOLD φranF=B

Proof

Step Hyp Ref Expression
1 rnmptcOLD.f F=xAB
2 rnmptcOLD.b φxABC
3 rnmptcOLD.a φA
4 fconstmpt A×B=xAB
5 1 4 eqtr4i F=A×B
6 2 1 fmptd φF:AC
7 6 ffnd φFFnA
8 fconst5 FFnAAF=A×BranF=B
9 7 3 8 syl2anc φF=A×BranF=B
10 5 9 mpbii φranF=B