Description: The range of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rntpos | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | 1 | elrn | |
3 | vex | |
|
4 | 3 1 | breldm | |
5 | dmtpos | |
|
6 | 5 | eleq2d | |
7 | 4 6 | imbitrid | |
8 | relcnv | |
|
9 | elrel | |
|
10 | 8 9 | mpan | |
11 | 7 10 | syl6 | |
12 | breq1 | |
|
13 | brtpos | |
|
14 | 13 | elv | |
15 | 12 14 | bitrdi | |
16 | opex | |
|
17 | 16 1 | brelrn | |
18 | 15 17 | syl6bi | |
19 | 18 | exlimivv | |
20 | 11 19 | syli | |
21 | 20 | exlimdv | |
22 | 2 21 | biimtrid | |
23 | 1 | elrn | |
24 | 3 1 | breldm | |
25 | elrel | |
|
26 | 25 | ex | |
27 | 24 26 | syl5 | |
28 | breq1 | |
|
29 | 28 14 | bitr4di | |
30 | opex | |
|
31 | 30 1 | brelrn | |
32 | 29 31 | syl6bi | |
33 | 32 | exlimivv | |
34 | 27 33 | syli | |
35 | 34 | exlimdv | |
36 | 23 35 | biimtrid | |
37 | 22 36 | impbid | |
38 | 37 | eqrdv | |