Metamath Proof Explorer


Theorem rntpos

Description: The range of tpos F when dom F is a relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion rntpos ReldomFrantposF=ranF

Proof

Step Hyp Ref Expression
1 vex zV
2 1 elrn zrantposFwwtposFz
3 vex wV
4 3 1 breldm wtposFzwdomtposF
5 dmtpos ReldomFdomtposF=domF-1
6 5 eleq2d ReldomFwdomtposFwdomF-1
7 4 6 imbitrid ReldomFwtposFzwdomF-1
8 relcnv ReldomF-1
9 elrel ReldomF-1wdomF-1xyw=xy
10 8 9 mpan wdomF-1xyw=xy
11 7 10 syl6 ReldomFwtposFzxyw=xy
12 breq1 w=xywtposFzxytposFz
13 brtpos zVxytposFzyxFz
14 13 elv xytposFzyxFz
15 12 14 bitrdi w=xywtposFzyxFz
16 opex yxV
17 16 1 brelrn yxFzzranF
18 15 17 syl6bi w=xywtposFzzranF
19 18 exlimivv xyw=xywtposFzzranF
20 11 19 syli ReldomFwtposFzzranF
21 20 exlimdv ReldomFwwtposFzzranF
22 2 21 biimtrid ReldomFzrantposFzranF
23 1 elrn zranFwwFz
24 3 1 breldm wFzwdomF
25 elrel ReldomFwdomFyxw=yx
26 25 ex ReldomFwdomFyxw=yx
27 24 26 syl5 ReldomFwFzyxw=yx
28 breq1 w=yxwFzyxFz
29 28 14 bitr4di w=yxwFzxytposFz
30 opex xyV
31 30 1 brelrn xytposFzzrantposF
32 29 31 syl6bi w=yxwFzzrantposF
33 32 exlimivv yxw=yxwFzzrantposF
34 27 33 syli ReldomFwFzzrantposF
35 34 exlimdv ReldomFwwFzzrantposF
36 23 35 biimtrid ReldomFzranFzrantposF
37 22 36 impbid ReldomFzrantposFzranF
38 37 eqrdv ReldomFrantposF=ranF