Metamath Proof Explorer


Theorem rnxrnres

Description: Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021)

Ref Expression
Assertion rnxrnres ran R S A = x y | u A u R x u S y

Proof

Step Hyp Ref Expression
1 rnxrn ran R S A = x y | u u R x u S A y
2 brres y V u S A y u A u S y
3 2 elv u S A y u A u S y
4 3 anbi2i u R x u S A y u R x u A u S y
5 an12 u A u R x u S y u R x u A u S y
6 4 5 bitr4i u R x u S A y u A u R x u S y
7 6 exbii u u R x u S A y u u A u R x u S y
8 df-rex u A u R x u S y u u A u R x u S y
9 7 8 bitr4i u u R x u S A y u A u R x u S y
10 9 opabbii x y | u u R x u S A y = x y | u A u R x u S y
11 1 10 eqtri ran R S A = x y | u A u R x u S y