Metamath Proof Explorer


Theorem rp-intrabeq

Description: Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion rp-intrabeq A=BxOn|yAyx=xOn|yByx

Proof

Step Hyp Ref Expression
1 raleq A=ByAyxyByx
2 1 rabbidv A=BxOn|yAyx=xOn|yByx
3 2 inteqd A=BxOn|yAyx=xOn|yByx