Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
rp-intrabeq
Next ⟩
rp-unirabeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
rp-intrabeq
Description:
Equality theorem for supremum of sets of ordinals.
(Contributed by
RP
, 23-Jan-2025)
Ref
Expression
Assertion
rp-intrabeq
⊢
A
=
B
→
⋂
x
∈
On
|
∀
y
∈
A
y
⊆
x
=
⋂
x
∈
On
|
∀
y
∈
B
y
⊆
x
Proof
Step
Hyp
Ref
Expression
1
raleq
⊢
A
=
B
→
∀
y
∈
A
y
⊆
x
↔
∀
y
∈
B
y
⊆
x
2
1
rabbidv
⊢
A
=
B
→
x
∈
On
|
∀
y
∈
A
y
⊆
x
=
x
∈
On
|
∀
y
∈
B
y
⊆
x
3
2
inteqd
⊢
A
=
B
→
⋂
x
∈
On
|
∀
y
∈
A
y
⊆
x
=
⋂
x
∈
On
|
∀
y
∈
B
y
⊆
x