Metamath Proof Explorer


Theorem rpexp1i

Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)

Ref Expression
Assertion rpexp1i ABM0AgcdB=1AMgcdB=1

Proof

Step Hyp Ref Expression
1 elnn0 M0MM=0
2 rpexp ABMAMgcdB=1AgcdB=1
3 2 biimprd ABMAgcdB=1AMgcdB=1
4 3 3expa ABMAgcdB=1AMgcdB=1
5 simpr ABM=0M=0
6 5 oveq2d ABM=0AM=A0
7 zcn AA
8 7 ad2antrr ABM=0A
9 8 exp0d ABM=0A0=1
10 6 9 eqtrd ABM=0AM=1
11 10 oveq1d ABM=0AMgcdB=1gcdB
12 1gcd B1gcdB=1
13 12 ad2antlr ABM=01gcdB=1
14 11 13 eqtrd ABM=0AMgcdB=1
15 14 a1d ABM=0AgcdB=1AMgcdB=1
16 4 15 jaodan ABMM=0AgcdB=1AMgcdB=1
17 1 16 sylan2b ABM0AgcdB=1AMgcdB=1
18 17 3impa ABM0AgcdB=1AMgcdB=1