Metamath Proof Explorer


Theorem rpexp1i

Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)

Ref Expression
Assertion rpexp1i A B M 0 A gcd B = 1 A M gcd B = 1

Proof

Step Hyp Ref Expression
1 elnn0 M 0 M M = 0
2 rpexp A B M A M gcd B = 1 A gcd B = 1
3 2 biimprd A B M A gcd B = 1 A M gcd B = 1
4 3 3expa A B M A gcd B = 1 A M gcd B = 1
5 simpr A B M = 0 M = 0
6 5 oveq2d A B M = 0 A M = A 0
7 zcn A A
8 7 ad2antrr A B M = 0 A
9 8 exp0d A B M = 0 A 0 = 1
10 6 9 eqtrd A B M = 0 A M = 1
11 10 oveq1d A B M = 0 A M gcd B = 1 gcd B
12 1gcd B 1 gcd B = 1
13 12 ad2antlr A B M = 0 1 gcd B = 1
14 11 13 eqtrd A B M = 0 A M gcd B = 1
15 14 a1d A B M = 0 A gcd B = 1 A M gcd B = 1
16 4 15 jaodan A B M M = 0 A gcd B = 1 A M gcd B = 1
17 1 16 sylan2b A B M 0 A gcd B = 1 A M gcd B = 1
18 17 3impa A B M 0 A gcd B = 1 A M gcd B = 1