Metamath Proof Explorer


Theorem rplogcl

Description: Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion rplogcl A1<AlogA+

Proof

Step Hyp Ref Expression
1 simpl A1<AA
2 0red A1<A0
3 1red A1<A1
4 0lt1 0<1
5 4 a1i A1<A0<1
6 simpr A1<A1<A
7 2 3 1 5 6 lttrd A1<A0<A
8 1 7 elrpd A1<AA+
9 relogcl A+logA
10 8 9 syl A1<AlogA
11 log1 log1=0
12 1rp 1+
13 logltb 1+A+1<Alog1<logA
14 12 8 13 sylancr A1<A1<Alog1<logA
15 6 14 mpbid A1<Alog1<logA
16 11 15 eqbrtrrid A1<A0<logA
17 10 16 elrpd A1<AlogA+