Metamath Proof Explorer


Theorem rpnnen2lem2

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem2 AFA:

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 nnex V
3 2 elpw2 A𝒫A
4 eleq2 x=AnxnA
5 4 ifbid x=Aifnx13n0=ifnA13n0
6 5 mpteq2dv x=Anifnx13n0=nifnA13n0
7 2 mptex nifnA13n0V
8 6 1 7 fvmpt A𝒫FA=nifnA13n0
9 3 8 sylbir AFA=nifnA13n0
10 1re 1
11 3nn 3
12 nndivre 1313
13 10 11 12 mp2an 13
14 nnnn0 nn0
15 reexpcl 13n013n
16 13 14 15 sylancr n13n
17 0re 0
18 ifcl 13n0ifnA13n0
19 16 17 18 sylancl nifnA13n0
20 19 adantl AnifnA13n0
21 9 20 fmpt3d AFA: