Metamath Proof Explorer


Theorem rppwr

Description: If A and B are relatively prime, then so are A ^ N and B ^ N . (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rppwr A B N A gcd B = 1 A N gcd B N = 1

Proof

Step Hyp Ref Expression
1 simpl1 A B N A gcd B = 1 A
2 simpl2 A B N A gcd B = 1 B
3 simpl3 A B N A gcd B = 1 N
4 3 nnnn0d A B N A gcd B = 1 N 0
5 2 4 nnexpcld A B N A gcd B = 1 B N
6 1 5 3 3jca A B N A gcd B = 1 A B N N
7 1 nnzd A B N A gcd B = 1 A
8 5 nnzd A B N A gcd B = 1 B N
9 gcdcom A B N A gcd B N = B N gcd A
10 7 8 9 syl2anc A B N A gcd B = 1 A gcd B N = B N gcd A
11 2 1 3 3jca A B N A gcd B = 1 B A N
12 nnz A A
13 12 3ad2ant1 A B N A
14 nnz B B
15 14 3ad2ant2 A B N B
16 gcdcom A B A gcd B = B gcd A
17 13 15 16 syl2anc A B N A gcd B = B gcd A
18 17 eqeq1d A B N A gcd B = 1 B gcd A = 1
19 18 biimpa A B N A gcd B = 1 B gcd A = 1
20 rplpwr B A N B gcd A = 1 B N gcd A = 1
21 11 19 20 sylc A B N A gcd B = 1 B N gcd A = 1
22 10 21 eqtrd A B N A gcd B = 1 A gcd B N = 1
23 rplpwr A B N N A gcd B N = 1 A N gcd B N = 1
24 6 22 23 sylc A B N A gcd B = 1 A N gcd B N = 1
25 24 ex A B N A gcd B = 1 A N gcd B N = 1