Metamath Proof Explorer
		
		
		
		Description:  Prove an existential.  (Contributed by Rohan Ridenour, 12-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rr-spce.1 |  | 
					
						|  |  | rr-spce.2 |  | 
				
					|  | Assertion | rr-spce |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rr-spce.1 |  | 
						
							| 2 |  | rr-spce.2 |  | 
						
							| 3 | 2 | elexd |  | 
						
							| 4 |  | isset |  | 
						
							| 5 | 3 4 | sylib |  | 
						
							| 6 | 1 | ex |  | 
						
							| 7 | 6 | eximdv |  | 
						
							| 8 | 5 7 | mpd |  |