Metamath Proof Explorer


Theorem rr-spce

Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)

Ref Expression
Hypotheses rr-spce.1 φx=Aψ
rr-spce.2 φAV
Assertion rr-spce φxψ

Proof

Step Hyp Ref Expression
1 rr-spce.1 φx=Aψ
2 rr-spce.2 φAV
3 2 elexd φAV
4 isset AVxx=A
5 3 4 sylib φxx=A
6 1 ex φx=Aψ
7 6 eximdv φxx=Axψ
8 5 7 mpd φxψ