Description: Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rr-spce.1 | |
|
rr-spce.2 | |
||
Assertion | rr-spce | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rr-spce.1 | |
|
2 | rr-spce.2 | |
|
3 | 2 | elexd | |
4 | isset | |
|
5 | 3 4 | sylib | |
6 | 1 | ex | |
7 | 6 | eximdv | |
8 | 5 7 | mpd | |