Metamath Proof Explorer


Theorem rrgeq0i

Description: Property of a left-regular element. (Contributed by Stefan O'Rear, 22-Mar-2015)

Ref Expression
Hypotheses rrgval.e E=RLRegR
rrgval.b B=BaseR
rrgval.t ·˙=R
rrgval.z 0˙=0R
Assertion rrgeq0i XEYBX·˙Y=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 rrgval.e E=RLRegR
2 rrgval.b B=BaseR
3 rrgval.t ·˙=R
4 rrgval.z 0˙=0R
5 1 2 3 4 isrrg XEXByBX·˙y=0˙y=0˙
6 5 simprbi XEyBX·˙y=0˙y=0˙
7 oveq2 y=YX·˙y=X·˙Y
8 7 eqeq1d y=YX·˙y=0˙X·˙Y=0˙
9 eqeq1 y=Yy=0˙Y=0˙
10 8 9 imbi12d y=YX·˙y=0˙y=0˙X·˙Y=0˙Y=0˙
11 10 rspcv YByBX·˙y=0˙y=0˙X·˙Y=0˙Y=0˙
12 6 11 mpan9 XEYBX·˙Y=0˙Y=0˙