Metamath Proof Explorer


Theorem rrvdmss

Description: The domain of a random variable. This is useful to shorten proofs. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvdmss φdomPdomX

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 2 rrvdm φdomX=domP
4 eqimss2 domX=domPdomPdomX
5 3 4 syl φdomPdomX