Metamath Proof Explorer


Theorem rrvrnss

Description: The range of a random variable as a subset of RR . (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvrnss φranX

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 2 rrvvf φX:domP
4 3 frnd φranX