Metamath Proof Explorer


Theorem rrxtopon

Description: The topology on generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrxtopon.1 J = TopOpen I
Assertion rrxtopon I V J TopOn Base I

Proof

Step Hyp Ref Expression
1 rrxtopon.1 J = TopOpen I
2 rrxtps I V I TopSp
3 eqid Base I = Base I
4 3 1 istps I TopSp J TopOn Base I
5 2 4 sylib I V J TopOn Base I