Metamath Proof Explorer


Theorem rsp1

Description: The span of the identity element is the unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k K=RSpanR
rspcl.b B=BaseR
rsp1.o 1˙=1R
Assertion rsp1 RRingK1˙=B

Proof

Step Hyp Ref Expression
1 rspcl.k K=RSpanR
2 rspcl.b B=BaseR
3 rsp1.o 1˙=1R
4 2 3 ringidcl RRing1˙B
5 4 snssd RRing1˙B
6 1 2 rspssid RRing1˙B1˙K1˙
7 5 6 mpdan RRing1˙K1˙
8 3 fvexi 1˙V
9 8 snss 1˙K1˙1˙K1˙
10 7 9 sylibr RRing1˙K1˙
11 eqid LIdealR=LIdealR
12 1 2 11 rspcl RRing1˙BK1˙LIdealR
13 5 12 mpdan RRingK1˙LIdealR
14 11 2 3 lidl1el RRingK1˙LIdealR1˙K1˙K1˙=B
15 13 14 mpdan RRing1˙K1˙K1˙=B
16 10 15 mpbid RRingK1˙=B