Metamath Proof Explorer


Theorem rspc2vd

Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class D for the second set variable y may depend on the first set variable x . (Contributed by AV, 29-Mar-2021)

Ref Expression
Hypotheses rspc2vd.a x=Aθχ
rspc2vd.b y=Bχψ
rspc2vd.c φAC
rspc2vd.d φx=AD=E
rspc2vd.e φBE
Assertion rspc2vd φxCyDθψ

Proof

Step Hyp Ref Expression
1 rspc2vd.a x=Aθχ
2 rspc2vd.b y=Bχψ
3 rspc2vd.c φAC
4 rspc2vd.d φx=AD=E
5 rspc2vd.e φBE
6 3 4 csbied φA/xD=E
7 5 6 eleqtrrd φBA/xD
8 nfcsb1v _xA/xD
9 nfv xχ
10 8 9 nfralw xyA/xDχ
11 csbeq1a x=AD=A/xD
12 11 1 raleqbidv x=AyDθyA/xDχ
13 10 12 rspc ACxCyDθyA/xDχ
14 3 13 syl φxCyDθyA/xDχ
15 2 rspcv BA/xDyA/xDχψ
16 7 14 15 sylsyld φxCyDθψ