Metamath Proof Explorer


Theorem rspc3ev

Description: 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses rspc3v.1 x=Aφχ
rspc3v.2 y=Bχθ
rspc3v.3 z=Cθψ
Assertion rspc3ev ARBSCTψxRySzTφ

Proof

Step Hyp Ref Expression
1 rspc3v.1 x=Aφχ
2 rspc3v.2 y=Bχθ
3 rspc3v.3 z=Cθψ
4 simpl1 ARBSCTψAR
5 simpl2 ARBSCTψBS
6 3 rspcev CTψzTθ
7 6 3ad2antl3 ARBSCTψzTθ
8 1 rexbidv x=AzTφzTχ
9 2 rexbidv y=BzTχzTθ
10 8 9 rspc2ev ARBSzTθxRySzTφ
11 4 5 7 10 syl3anc ARBSCTψxRySzTφ