Metamath Proof Explorer


Theorem rspc4v

Description: 4-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2025)

Ref Expression
Hypotheses rspc4v.1 x=Aφχ
rspc4v.2 y=Bχθ
rspc4v.3 z=Cθτ
rspc4v.4 w=Dτψ
Assertion rspc4v ARBSCTDUxRySzTwUφψ

Proof

Step Hyp Ref Expression
1 rspc4v.1 x=Aφχ
2 rspc4v.2 y=Bχθ
3 rspc4v.3 z=Cθτ
4 rspc4v.4 w=Dτψ
5 df-3an ARBSCTARBSCT
6 1 ralbidv x=AwUφwUχ
7 2 ralbidv y=BwUχwUθ
8 3 ralbidv z=CwUθwUτ
9 6 7 8 rspc3v ARBSCTxRySzTwUφwUτ
10 4 rspcv DUwUτψ
11 9 10 sylan9 ARBSCTDUxRySzTwUφψ
12 5 11 sylanbr ARBSCTDUxRySzTwUφψ
13 12 anasss ARBSCTDUxRySzTwUφψ