Metamath Proof Explorer


Theorem rspcebdv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses rspcdv.1 φAB
rspcdv.2 φx=Aψχ
rspcebdv.1 φψx=A
Assertion rspcebdv φxBψχ

Proof

Step Hyp Ref Expression
1 rspcdv.1 φAB
2 rspcdv.2 φx=Aψχ
3 rspcebdv.1 φψx=A
4 3 2 syldan φψψχ
5 4 biimpd φψψχ
6 5 expcom ψφψχ
7 6 pm2.43b φψχ
8 7 rexlimdvw φxBψχ
9 1 2 rspcedv φχxBψ
10 8 9 impbid φxBψχ