Metamath Proof Explorer


Theorem rspsnasso

Description: Two elements X and Y of a ring R are associates, i.e. each divides the other, iff the ideals they generate are equal. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses dvdsrspss.b B=BaseR
dvdsrspss.k K=RSpanR
dvdsrspss.d ˙=rR
dvdsrspss.x φXB
dvdsrspss.y φYB
dvdsrspss.r φRRing
Assertion rspsnasso φX˙YY˙XKY=KX

Proof

Step Hyp Ref Expression
1 dvdsrspss.b B=BaseR
2 dvdsrspss.k K=RSpanR
3 dvdsrspss.d ˙=rR
4 dvdsrspss.x φXB
5 dvdsrspss.y φYB
6 dvdsrspss.r φRRing
7 1 2 3 4 5 6 dvdsrspss φX˙YKYKX
8 1 2 3 5 4 6 dvdsrspss φY˙XKXKY
9 7 8 anbi12d φX˙YY˙XKYKXKXKY
10 eqss KY=KXKYKXKXKY
11 9 10 bitr4di φX˙YY˙XKY=KX