Metamath Proof Explorer


Theorem s6eqd

Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
s4eqd.4 φD=Q
s5eqd.5 φE=R
s6eqd.6 φF=S
Assertion s6eqd φ⟨“ABCDEF”⟩=⟨“NOPQRS”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 s4eqd.4 φD=Q
5 s5eqd.5 φE=R
6 s6eqd.6 φF=S
7 1 2 3 4 5 s5eqd φ⟨“ABCDE”⟩=⟨“NOPQR”⟩
8 6 s1eqd φ⟨“F”⟩=⟨“S”⟩
9 7 8 oveq12d φ⟨“ABCDE”⟩++⟨“F”⟩=⟨“NOPQR”⟩++⟨“S”⟩
10 df-s6 ⟨“ABCDEF”⟩=⟨“ABCDE”⟩++⟨“F”⟩
11 df-s6 ⟨“NOPQRS”⟩=⟨“NOPQR”⟩++⟨“S”⟩
12 9 10 11 3eqtr4g φ⟨“ABCDEF”⟩=⟨“NOPQRS”⟩