Metamath Proof Explorer


Theorem safesnsupfiub

Description: If B is a finite subset of ordered class A , we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024)

Ref Expression
Hypotheses safesnsupfiub.small φ O = O = 1 𝑜
safesnsupfiub.finite φ B Fin
safesnsupfiub.subset φ B A
safesnsupfiub.ordered φ R Or A
safesnsupfiub.ub φ x B y C x R y
Assertion safesnsupfiub φ x if O B sup B A R B y C x R y

Proof

Step Hyp Ref Expression
1 safesnsupfiub.small φ O = O = 1 𝑜
2 safesnsupfiub.finite φ B Fin
3 safesnsupfiub.subset φ B A
4 safesnsupfiub.ordered φ R Or A
5 safesnsupfiub.ub φ x B y C x R y
6 1 2 3 4 safesnsupfiss φ if O B sup B A R B B
7 6 sseld φ x if O B sup B A R B x B
8 7 imim1d φ x B y C x R y x if O B sup B A R B y C x R y
9 8 ralimdv2 φ x B y C x R y x if O B sup B A R B y C x R y
10 5 9 mpd φ x if O B sup B A R B y C x R y