Metamath Proof Explorer


Theorem sbc2rexgOLD

Description: Exchange a substitution with two existentials. (Contributed by Stefan O'Rear, 11-Oct-2014) Obsolete as of 24-Aug-2018. Use csbov123 instead. (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbc2rexgOLD AV[˙A/a]˙bBcCφbBcC[˙A/a]˙φ

Proof

Step Hyp Ref Expression
1 elex AVAV
2 sbcrexgOLD AV[˙A/a]˙bBcCφbB[˙A/a]˙cCφ
3 sbcrexgOLD AV[˙A/a]˙cCφcC[˙A/a]˙φ
4 3 rexbidv AVbB[˙A/a]˙cCφbBcC[˙A/a]˙φ
5 2 4 bitrd AV[˙A/a]˙bBcCφbBcC[˙A/a]˙φ
6 1 5 syl AV[˙A/a]˙bBcCφbBcC[˙A/a]˙φ