Metamath Proof Explorer


Theorem sbcabel

Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005)

Ref Expression
Hypothesis sbcabel.1 _xB
Assertion sbcabel AV[˙A/x]˙y|φBy|[˙A/x]˙φB

Proof

Step Hyp Ref Expression
1 sbcabel.1 _xB
2 elex AVAV
3 sbcex2 [˙A/x]˙ww=y|φwBw[˙A/x]˙w=y|φwB
4 sbcan [˙A/x]˙w=y|φwB[˙A/x]˙w=y|φ[˙A/x]˙wB
5 sbcal [˙A/x]˙yywφy[˙A/x]˙ywφ
6 sbcbig AV[˙A/x]˙ywφ[˙A/x]˙yw[˙A/x]˙φ
7 sbcg AV[˙A/x]˙ywyw
8 7 bibi1d AV[˙A/x]˙yw[˙A/x]˙φyw[˙A/x]˙φ
9 6 8 bitrd AV[˙A/x]˙ywφyw[˙A/x]˙φ
10 9 albidv AVy[˙A/x]˙ywφyyw[˙A/x]˙φ
11 5 10 bitrid AV[˙A/x]˙yywφyyw[˙A/x]˙φ
12 eqabb w=y|φyywφ
13 12 sbcbii [˙A/x]˙w=y|φ[˙A/x]˙yywφ
14 eqabb w=y|[˙A/x]˙φyyw[˙A/x]˙φ
15 11 13 14 3bitr4g AV[˙A/x]˙w=y|φw=y|[˙A/x]˙φ
16 1 nfcri xwB
17 16 sbcgf AV[˙A/x]˙wBwB
18 15 17 anbi12d AV[˙A/x]˙w=y|φ[˙A/x]˙wBw=y|[˙A/x]˙φwB
19 4 18 bitrid AV[˙A/x]˙w=y|φwBw=y|[˙A/x]˙φwB
20 19 exbidv AVw[˙A/x]˙w=y|φwBww=y|[˙A/x]˙φwB
21 3 20 bitrid AV[˙A/x]˙ww=y|φwBww=y|[˙A/x]˙φwB
22 dfclel y|φBww=y|φwB
23 22 sbcbii [˙A/x]˙y|φB[˙A/x]˙ww=y|φwB
24 dfclel y|[˙A/x]˙φBww=y|[˙A/x]˙φwB
25 21 23 24 3bitr4g AV[˙A/x]˙y|φBy|[˙A/x]˙φB
26 2 25 syl AV[˙A/x]˙y|φBy|[˙A/x]˙φB