Metamath Proof Explorer


Theorem sbcrel

Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion sbcrel AV[˙A/x]˙RelRRelA/xR

Proof

Step Hyp Ref Expression
1 sbcssg AV[˙A/x]˙RV×VA/xRA/xV×V
2 csbconstg AVA/xV×V=V×V
3 2 sseq2d AVA/xRA/xV×VA/xRV×V
4 1 3 bitrd AV[˙A/x]˙RV×VA/xRV×V
5 df-rel RelRRV×V
6 5 sbcbii [˙A/x]˙RelR[˙A/x]˙RV×V
7 df-rel RelA/xRA/xRV×V
8 4 6 7 3bitr4g AV[˙A/x]˙RelRRelA/xR