| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcssg |  |-  ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) ) ) | 
						
							| 2 |  | csbconstg |  |-  ( A e. V -> [_ A / x ]_ ( _V X. _V ) = ( _V X. _V ) ) | 
						
							| 3 | 2 | sseq2d |  |-  ( A e. V -> ( [_ A / x ]_ R C_ [_ A / x ]_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) | 
						
							| 4 | 1 3 | bitrd |  |-  ( A e. V -> ( [. A / x ]. R C_ ( _V X. _V ) <-> [_ A / x ]_ R C_ ( _V X. _V ) ) ) | 
						
							| 5 |  | df-rel |  |-  ( Rel R <-> R C_ ( _V X. _V ) ) | 
						
							| 6 | 5 | sbcbii |  |-  ( [. A / x ]. Rel R <-> [. A / x ]. R C_ ( _V X. _V ) ) | 
						
							| 7 |  | df-rel |  |-  ( Rel [_ A / x ]_ R <-> [_ A / x ]_ R C_ ( _V X. _V ) ) | 
						
							| 8 | 4 6 7 | 3bitr4g |  |-  ( A e. V -> ( [. A / x ]. Rel R <-> Rel [_ A / x ]_ R ) ) |