Metamath Proof Explorer


Theorem sbel2x

Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion sbel2x φxyx=zy=wywxzφ

Proof

Step Hyp Ref Expression
1 nfv yφ
2 nfv xφ
3 1 2 2sb5rf φyxy=wx=zywxzφ
4 ancom y=wx=zx=zy=w
5 4 anbi1i y=wx=zywxzφx=zy=wywxzφ
6 5 2exbii yxy=wx=zywxzφyxx=zy=wywxzφ
7 excom yxx=zy=wywxzφxyx=zy=wywxzφ
8 3 6 7 3bitri φxyx=zy=wywxzφ