Metamath Proof Explorer


Theorem sbievOLD

Description: Obsolete version of sbiev as of 24-Aug-2025. (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 18-Jan-2023) Remove dependence on ax-10 and shorten proof. (Revised by BJ, 18-Jul-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbiev.1 x ψ
sbiev.2 x = y φ ψ
Assertion sbievOLD y x φ ψ

Proof

Step Hyp Ref Expression
1 sbiev.1 x ψ
2 sbiev.2 x = y φ ψ
3 sb6 y x φ x x = y φ
4 1 2 equsalv x x = y φ ψ
5 3 4 bitri y x φ ψ