Metamath Proof Explorer


Theorem sbn1ALT

Description: Alternate proof of sbn1 , not using the false constant. (Contributed by BJ, 18-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbn1ALT tx¬φ¬txφ

Proof

Step Hyp Ref Expression
1 nsb x¬φ¬φ¬txφ¬φ
2 pm3.24 ¬φ¬φ
3 1 2 mpg ¬txφ¬φ
4 sban txφ¬φtxφtx¬φ
5 3 4 mtbi ¬txφtx¬φ
6 pm3.21 tx¬φtxφtxφtx¬φ
7 5 6 mtoi tx¬φ¬txφ