Metamath Proof Explorer


Theorem sbnfc2

Description: Two ways of expressing " x is (effectively) not free in A ". (Contributed by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion sbnfc2 _xAyzy/xA=z/xA

Proof

Step Hyp Ref Expression
1 vex yV
2 csbtt yV_xAy/xA=A
3 1 2 mpan _xAy/xA=A
4 vex zV
5 csbtt zV_xAz/xA=A
6 4 5 mpan _xAz/xA=A
7 3 6 eqtr4d _xAy/xA=z/xA
8 7 alrimivv _xAyzy/xA=z/xA
9 nfv wyzy/xA=z/xA
10 eleq2 y/xA=z/xAwy/xAwz/xA
11 sbsbc yxwA[˙y/x]˙wA
12 sbcel2 [˙y/x]˙wAwy/xA
13 11 12 bitri yxwAwy/xA
14 sbsbc zxwA[˙z/x]˙wA
15 sbcel2 [˙z/x]˙wAwz/xA
16 14 15 bitri zxwAwz/xA
17 10 13 16 3bitr4g y/xA=z/xAyxwAzxwA
18 17 2alimi yzy/xA=z/xAyzyxwAzxwA
19 sbnf2 xwAyzyxwAzxwA
20 18 19 sylibr yzy/xA=z/xAxwA
21 9 20 nfcd yzy/xA=z/xA_xA
22 8 21 impbii _xAyzy/xA=z/xA