| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- y e. _V |
| 2 |
|
csbtt |
|- ( ( y e. _V /\ F/_ x A ) -> [_ y / x ]_ A = A ) |
| 3 |
1 2
|
mpan |
|- ( F/_ x A -> [_ y / x ]_ A = A ) |
| 4 |
|
vex |
|- z e. _V |
| 5 |
|
csbtt |
|- ( ( z e. _V /\ F/_ x A ) -> [_ z / x ]_ A = A ) |
| 6 |
4 5
|
mpan |
|- ( F/_ x A -> [_ z / x ]_ A = A ) |
| 7 |
3 6
|
eqtr4d |
|- ( F/_ x A -> [_ y / x ]_ A = [_ z / x ]_ A ) |
| 8 |
7
|
alrimivv |
|- ( F/_ x A -> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) |
| 9 |
|
nfv |
|- F/ w A. y A. z [_ y / x ]_ A = [_ z / x ]_ A |
| 10 |
|
eleq2 |
|- ( [_ y / x ]_ A = [_ z / x ]_ A -> ( w e. [_ y / x ]_ A <-> w e. [_ z / x ]_ A ) ) |
| 11 |
|
sbsbc |
|- ( [ y / x ] w e. A <-> [. y / x ]. w e. A ) |
| 12 |
|
sbcel2 |
|- ( [. y / x ]. w e. A <-> w e. [_ y / x ]_ A ) |
| 13 |
11 12
|
bitri |
|- ( [ y / x ] w e. A <-> w e. [_ y / x ]_ A ) |
| 14 |
|
sbsbc |
|- ( [ z / x ] w e. A <-> [. z / x ]. w e. A ) |
| 15 |
|
sbcel2 |
|- ( [. z / x ]. w e. A <-> w e. [_ z / x ]_ A ) |
| 16 |
14 15
|
bitri |
|- ( [ z / x ] w e. A <-> w e. [_ z / x ]_ A ) |
| 17 |
10 13 16
|
3bitr4g |
|- ( [_ y / x ]_ A = [_ z / x ]_ A -> ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
| 18 |
17
|
2alimi |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
| 19 |
|
sbnf2 |
|- ( F/ x w e. A <-> A. y A. z ( [ y / x ] w e. A <-> [ z / x ] w e. A ) ) |
| 20 |
18 19
|
sylibr |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/ x w e. A ) |
| 21 |
9 20
|
nfcd |
|- ( A. y A. z [_ y / x ]_ A = [_ z / x ]_ A -> F/_ x A ) |
| 22 |
8 21
|
impbii |
|- ( F/_ x A <-> A. y A. z [_ y / x ]_ A = [_ z / x ]_ A ) |