| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 2 |  | csbtt | ⊢ ( ( 𝑦  ∈  V  ∧  Ⅎ 𝑥 𝐴 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( Ⅎ 𝑥 𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 4 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 5 |  | csbtt | ⊢ ( ( 𝑧  ∈  V  ∧  Ⅎ 𝑥 𝐴 )  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 6 | 4 5 | mpan | ⊢ ( Ⅎ 𝑥 𝐴  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  =  𝐴 ) | 
						
							| 7 | 3 6 | eqtr4d | ⊢ ( Ⅎ 𝑥 𝐴  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 8 | 7 | alrimivv | ⊢ ( Ⅎ 𝑥 𝐴  →  ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 | 
						
							| 10 |  | eleq2 | ⊢ ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  ( 𝑤  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ↔  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 11 |  | sbsbc | ⊢ ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴 ) | 
						
							| 12 |  | sbcel2 | ⊢ ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  𝑤  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 13 | 11 12 | bitri | ⊢ ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  𝑤  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 14 |  | sbsbc | ⊢ ( [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴  ↔  [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴 ) | 
						
							| 15 |  | sbcel2 | ⊢ ( [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴  ↔  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 16 | 14 15 | bitri | ⊢ ( [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴  ↔  𝑤  ∈  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 17 | 10 13 16 | 3bitr4g | ⊢ ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴 ) ) | 
						
							| 18 | 17 | 2alimi | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴 ) ) | 
						
							| 19 |  | sbnf2 | ⊢ ( Ⅎ 𝑥 𝑤  ∈  𝐴  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝑤  ∈  𝐴  ↔  [ 𝑧  /  𝑥 ] 𝑤  ∈  𝐴 ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  Ⅎ 𝑥 𝑤  ∈  𝐴 ) | 
						
							| 21 | 9 20 | nfcd | ⊢ ( ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 22 | 8 21 | impbii | ⊢ ( Ⅎ 𝑥 𝐴  ↔  ∀ 𝑦 ∀ 𝑧 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) |