Metamath Proof Explorer


Theorem sbrim

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 4-Oct-2016) Avoid ax-10 . (Revised by Gino Giotto, 20-Nov-2024)

Ref Expression
Hypothesis sbrim.1 x φ
Assertion sbrim y x φ ψ φ y x ψ

Proof

Step Hyp Ref Expression
1 sbrim.1 x φ
2 bi2.04 x = t φ ψ φ x = t ψ
3 2 albii x x = t φ ψ x φ x = t ψ
4 1 19.21 x φ x = t ψ φ x x = t ψ
5 3 4 bitri x x = t φ ψ φ x x = t ψ
6 5 imbi2i t = y x x = t φ ψ t = y φ x x = t ψ
7 bi2.04 t = y φ x x = t ψ φ t = y x x = t ψ
8 6 7 bitri t = y x x = t φ ψ φ t = y x x = t ψ
9 8 albii t t = y x x = t φ ψ t φ t = y x x = t ψ
10 df-sb y x φ ψ t t = y x x = t φ ψ
11 df-sb y x ψ t t = y x x = t ψ
12 11 imbi2i φ y x ψ φ t t = y x x = t ψ
13 19.21v t φ t = y x x = t ψ φ t t = y x x = t ψ
14 12 13 bitr4i φ y x ψ t φ t = y x x = t ψ
15 9 10 14 3bitr4i y x φ ψ φ y x ψ