Metamath Proof Explorer


Theorem sbrim

Description: Substitution in an implication with a variable not free in the antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 4-Oct-2016) Avoid ax-10 . (Revised by Gino Giotto, 20-Nov-2024)

Ref Expression
Hypothesis sbrim.1 xφ
Assertion sbrim yxφψφyxψ

Proof

Step Hyp Ref Expression
1 sbrim.1 xφ
2 bi2.04 x=tφψφx=tψ
3 2 albii xx=tφψxφx=tψ
4 1 19.21 xφx=tψφxx=tψ
5 3 4 bitri xx=tφψφxx=tψ
6 5 imbi2i t=yxx=tφψt=yφxx=tψ
7 bi2.04 t=yφxx=tψφt=yxx=tψ
8 6 7 bitri t=yxx=tφψφt=yxx=tψ
9 8 albii tt=yxx=tφψtφt=yxx=tψ
10 df-sb yxφψtt=yxx=tφψ
11 df-sb yxψtt=yxx=tψ
12 11 imbi2i φyxψφtt=yxx=tψ
13 19.21v tφt=yxx=tψφtt=yxx=tψ
14 12 13 bitr4i φyxψtφt=yxx=tψ
15 9 10 14 3bitr4i yxφψφyxψ