Metamath Proof Explorer


Theorem sclnbgrelself

Description: A vertex N is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v V = Vtx G
dfsclnbgr2.s S = n V | e E N n e
dfsclnbgr2.e E = Edg G
Assertion sclnbgrelself N S N V e E N e

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v V = Vtx G
2 dfsclnbgr2.s S = n V | e E N n e
3 dfsclnbgr2.e E = Edg G
4 1 2 3 sclnbgrel N S N V e E N N e
5 dfsn2 N = N N
6 5 eqcomi N N = N
7 6 sseq1i N N e N e
8 snssg N V N e N e
9 7 8 bitr4id N V N N e N e
10 9 rexbidv N V e E N N e e E N e
11 10 pm5.32i N V e E N N e N V e E N e
12 4 11 bitri N S N V e E N e