Metamath Proof Explorer


Theorem sdomne0

Description: A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025)

Ref Expression
Assertion sdomne0 BAA

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex1i BABV
3 breq1 B=BAA
4 3 biimpd B=BAA
5 4 a1i BVB=BAA
6 0sdomg BVBB
7 sdomtr BBAA
8 7 ex BBAA
9 6 8 syl6bir BVBBAA
10 5 9 pm2.61dne BVBAA
11 2 10 syl BABAA
12 1 brrelex2i AAV
13 0sdomg AVAA
14 12 13 syl AAA
15 14 ibi AA
16 11 15 syl6 BABAA
17 16 pm2.43i BAA