Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sdomne0d.a | |
|
sdomne0d.b | |
||
Assertion | sdomne0d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomne0d.a | |
|
2 | sdomne0d.b | |
|
3 | breq1 | |
|
4 | 3 | biimpd | |
5 | 4 | a1i | |
6 | 0sdomg | |
|
7 | sdomtr | |
|
8 | 7 | ex | |
9 | 6 8 | syl6bir | |
10 | 5 9 | pm2.61dne | |
11 | 2 10 | syl | |
12 | relsdom | |
|
13 | 12 | brrelex2i | |
14 | 0sdomg | |
|
15 | 13 14 | syl | |
16 | 15 | ibi | |
17 | 11 16 | syl6 | |
18 | 1 17 | mpd | |