Metamath Proof Explorer


Theorem sdomne0d

Description: A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024)

Ref Expression
Hypotheses sdomne0d.a φBA
sdomne0d.b φBV
Assertion sdomne0d φA

Proof

Step Hyp Ref Expression
1 sdomne0d.a φBA
2 sdomne0d.b φBV
3 breq1 B=BAA
4 3 biimpd B=BAA
5 4 a1i BVB=BAA
6 0sdomg BVBB
7 sdomtr BBAA
8 7 ex BBAA
9 6 8 syl6bir BVBBAA
10 5 9 pm2.61dne BVBAA
11 2 10 syl φBAA
12 relsdom Rel
13 12 brrelex2i AAV
14 0sdomg AVAA
15 13 14 syl AAA
16 15 ibi AA
17 11 16 syl6 φBAA
18 1 17 mpd φA