Metamath Proof Explorer


Theorem sdrgsubrg

Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Assertion sdrgsubrg ASubDRingRASubRingR

Proof

Step Hyp Ref Expression
1 issdrg ASubDRingRRDivRingASubRingRR𝑠ADivRing
2 1 simp2bi ASubDRingRASubRingR