Metamath Proof Explorer


Theorem sectid

Description: The identity is a section of itself. (Contributed by AV, 8-Apr-2020)

Ref Expression
Hypotheses invid.b B=BaseC
invid.i I=IdC
invid.c φCCat
invid.x φXB
Assertion sectid φIXXSectCXIX

Proof

Step Hyp Ref Expression
1 invid.b B=BaseC
2 invid.i I=IdC
3 invid.c φCCat
4 invid.x φXB
5 eqid HomC=HomC
6 eqid compC=compC
7 1 5 2 3 4 catidcl φIXXHomCX
8 1 5 2 3 4 6 4 7 catlid φIXXXcompCXIX=IX
9 eqid SectC=SectC
10 1 5 6 2 9 3 4 4 7 7 issect2 φIXXSectCXIXIXXXcompCXIX=IX
11 8 10 mpbird φIXXSectCXIX