Metamath Proof Explorer


Theorem sectrcl

Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025)

Ref Expression
Hypotheses sectrcl.s S = Sect C
sectrcl.f φ F X S Y G
Assertion sectrcl φ C Cat

Proof

Step Hyp Ref Expression
1 sectrcl.s S = Sect C
2 sectrcl.f φ F X S Y G
3 df-br F X S Y G F G X S Y
4 df-ov X S Y = S X Y
5 4 eleq2i F G X S Y F G S X Y
6 3 5 bitri F X S Y G F G S X Y
7 elfvne0 F G S X Y S
8 6 7 sylbi F X S Y G S
9 1 neeq1i S Sect C
10 n0 Sect C x x Sect C
11 9 10 bitri S x x Sect C
12 8 11 sylib F X S Y G x x Sect C
13 df-sect Sect = c Cat x Base c , y Base c f g | [˙ Hom c / h]˙ f x h y g y h x g x y comp c x f = Id c x
14 13 mptrcl x Sect C C Cat
15 14 exlimiv x x Sect C C Cat
16 2 12 15 3syl φ C Cat