Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Sections, inverses, isomorphisms
sectrcl
Next ⟩
sectrcl2
Metamath Proof Explorer
Ascii
Unicode
Theorem
sectrcl
Description:
Reverse closure for section relations.
(Contributed by
Zhi Wang
, 14-Nov-2025)
Ref
Expression
Hypotheses
sectrcl.s
⊢
S
=
Sect
⁡
C
sectrcl.f
⊢
φ
→
F
X
S
Y
G
Assertion
sectrcl
⊢
φ
→
C
∈
Cat
Proof
Step
Hyp
Ref
Expression
1
sectrcl.s
⊢
S
=
Sect
⁡
C
2
sectrcl.f
⊢
φ
→
F
X
S
Y
G
3
df-br
⊢
F
X
S
Y
G
↔
F
G
∈
X
S
Y
4
df-ov
⊢
X
S
Y
=
S
⁡
X
Y
5
4
eleq2i
⊢
F
G
∈
X
S
Y
↔
F
G
∈
S
⁡
X
Y
6
3
5
bitri
⊢
F
X
S
Y
G
↔
F
G
∈
S
⁡
X
Y
7
elfvne0
⊢
F
G
∈
S
⁡
X
Y
→
S
≠
∅
8
6
7
sylbi
⊢
F
X
S
Y
G
→
S
≠
∅
9
1
neeq1i
⊢
S
≠
∅
↔
Sect
⁡
C
≠
∅
10
n0
⊢
Sect
⁡
C
≠
∅
↔
∃
x
x
∈
Sect
⁡
C
11
9
10
bitri
⊢
S
≠
∅
↔
∃
x
x
∈
Sect
⁡
C
12
8
11
sylib
⊢
F
X
S
Y
G
→
∃
x
x
∈
Sect
⁡
C
13
df-sect
⊢
Sect
=
c
∈
Cat
⟼
x
∈
Base
c
,
y
∈
Base
c
⟼
f
g
|
[
˙
Hom
⁡
c
/
h
]
˙
f
∈
x
h
y
∧
g
∈
y
h
x
∧
g
x
y
comp
⁡
c
x
f
=
Id
⁡
c
⁡
x
14
13
mptrcl
⊢
x
∈
Sect
⁡
C
→
C
∈
Cat
15
14
exlimiv
⊢
∃
x
x
∈
Sect
⁡
C
→
C
∈
Cat
16
2
12
15
3syl
⊢
φ
→
C
∈
Cat