Metamath Proof Explorer


Theorem seex

Description: The R -preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014)

Ref Expression
Assertion seex RSeABAxA|xRBV

Proof

Step Hyp Ref Expression
1 df-se RSeAyAxA|xRyV
2 breq2 y=BxRyxRB
3 2 rabbidv y=BxA|xRy=xA|xRB
4 3 eleq1d y=BxA|xRyVxA|xRBV
5 4 rspccva yAxA|xRyVBAxA|xRBV
6 1 5 sylanb RSeABAxA|xRBV