Metamath Proof Explorer


Theorem seglecgr12

Description: Substitution law for segment comparison under congruence. Biconditional version. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion seglecgr12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H A B Seg C D E F Seg G H

Proof

Step Hyp Ref Expression
1 df-3an A B Cgr E F C D Cgr G H A B Seg C D A B Cgr E F C D Cgr G H A B Seg C D
2 seglecgr12im N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H A B Seg C D E F Seg G H
3 1 2 syl5bir N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H A B Seg C D E F Seg G H
4 3 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H A B Seg C D E F Seg G H
5 simp11 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N N
6 simp12 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N
7 simp13 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N B 𝔼 N
8 simp23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E 𝔼 N
9 simp31 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N F 𝔼 N
10 cgrcom N A 𝔼 N B 𝔼 N E 𝔼 N F 𝔼 N A B Cgr E F E F Cgr A B
11 5 6 7 8 9 10 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F E F Cgr A B
12 simp21 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C 𝔼 N
13 simp22 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N D 𝔼 N
14 simp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N G 𝔼 N
15 simp33 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N H 𝔼 N
16 cgrcom N C 𝔼 N D 𝔼 N G 𝔼 N H 𝔼 N C D Cgr G H G H Cgr C D
17 5 12 13 14 15 16 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N C D Cgr G H G H Cgr C D
18 11 17 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H E F Cgr A B G H Cgr C D
19 df-3an E F Cgr A B G H Cgr C D E F Seg G H E F Cgr A B G H Cgr C D E F Seg G H
20 seglecgr12im N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E F Cgr A B G H Cgr C D E F Seg G H A B Seg C D
21 5 8 9 14 15 6 7 12 13 20 syl333anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E F Cgr A B G H Cgr C D E F Seg G H A B Seg C D
22 19 21 syl5bir N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E F Cgr A B G H Cgr C D E F Seg G H A B Seg C D
23 22 expd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N E F Cgr A B G H Cgr C D E F Seg G H A B Seg C D
24 18 23 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H E F Seg G H A B Seg C D
25 4 24 impbidd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B Cgr E F C D Cgr G H A B Seg C D E F Seg G H