Metamath Proof Explorer


Theorem seglerflx

Description: Segment comparison is reflexive. Theorem 5.7 of Schwabhauser p. 42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion seglerflx N A 𝔼 N B 𝔼 N A B Seg A B

Proof

Step Hyp Ref Expression
1 simp3 N A 𝔼 N B 𝔼 N B 𝔼 N
2 btwntriv2 N A 𝔼 N B 𝔼 N B Btwn A B
3 cgrrflx N A 𝔼 N B 𝔼 N A B Cgr A B
4 breq1 y = B y Btwn A B B Btwn A B
5 opeq2 y = B A y = A B
6 5 breq2d y = B A B Cgr A y A B Cgr A B
7 4 6 anbi12d y = B y Btwn A B A B Cgr A y B Btwn A B A B Cgr A B
8 7 rspcev B 𝔼 N B Btwn A B A B Cgr A B y 𝔼 N y Btwn A B A B Cgr A y
9 1 2 3 8 syl12anc N A 𝔼 N B 𝔼 N y 𝔼 N y Btwn A B A B Cgr A y
10 simp1 N A 𝔼 N B 𝔼 N N
11 simp2 N A 𝔼 N B 𝔼 N A 𝔼 N
12 brsegle N A 𝔼 N B 𝔼 N A 𝔼 N B 𝔼 N A B Seg A B y 𝔼 N y Btwn A B A B Cgr A y
13 10 11 1 11 1 12 syl122anc N A 𝔼 N B 𝔼 N A B Seg A B y 𝔼 N y Btwn A B A B Cgr A y
14 9 13 mpbird N A 𝔼 N B 𝔼 N A B Seg A B