Metamath Proof Explorer


Theorem seglerflx

Description: Segment comparison is reflexive. Theorem 5.7 of Schwabhauser p. 42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion seglerflx NA𝔼NB𝔼NABSegAB

Proof

Step Hyp Ref Expression
1 simp3 NA𝔼NB𝔼NB𝔼N
2 btwntriv2 NA𝔼NB𝔼NBBtwnAB
3 cgrrflx NA𝔼NB𝔼NABCgrAB
4 breq1 y=ByBtwnABBBtwnAB
5 opeq2 y=BAy=AB
6 5 breq2d y=BABCgrAyABCgrAB
7 4 6 anbi12d y=ByBtwnABABCgrAyBBtwnABABCgrAB
8 7 rspcev B𝔼NBBtwnABABCgrABy𝔼NyBtwnABABCgrAy
9 1 2 3 8 syl12anc NA𝔼NB𝔼Ny𝔼NyBtwnABABCgrAy
10 simp1 NA𝔼NB𝔼NN
11 simp2 NA𝔼NB𝔼NA𝔼N
12 brsegle NA𝔼NB𝔼NA𝔼NB𝔼NABSegABy𝔼NyBtwnABABCgrAy
13 10 11 1 11 1 12 syl122anc NA𝔼NB𝔼NABSegABy𝔼NyBtwnABABCgrAy
14 9 13 mpbird NA𝔼NB𝔼NABSegAB