Metamath Proof Explorer


Theorem seglemin

Description: Any segment is at least as long as a degenerate segment. Theorem 5.11 of Schwabhauser p. 42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion seglemin NA𝔼NB𝔼NC𝔼NAASegBC

Proof

Step Hyp Ref Expression
1 simpr2 NA𝔼NB𝔼NC𝔼NB𝔼N
2 btwntriv1 NB𝔼NC𝔼NBBtwnBC
3 2 3adant3r1 NA𝔼NB𝔼NC𝔼NBBtwnBC
4 cgrtriv NA𝔼NB𝔼NAACgrBB
5 4 3adant3r3 NA𝔼NB𝔼NC𝔼NAACgrBB
6 breq1 y=ByBtwnBCBBtwnBC
7 opeq2 y=BBy=BB
8 7 breq2d y=BAACgrByAACgrBB
9 6 8 anbi12d y=ByBtwnBCAACgrByBBtwnBCAACgrBB
10 9 rspcev B𝔼NBBtwnBCAACgrBBy𝔼NyBtwnBCAACgrBy
11 1 3 5 10 syl12anc NA𝔼NB𝔼NC𝔼Ny𝔼NyBtwnBCAACgrBy
12 simpl NA𝔼NB𝔼NC𝔼NN
13 simpr1 NA𝔼NB𝔼NC𝔼NA𝔼N
14 simpr3 NA𝔼NB𝔼NC𝔼NC𝔼N
15 brsegle NA𝔼NA𝔼NB𝔼NC𝔼NAASegBCy𝔼NyBtwnBCAACgrBy
16 12 13 13 1 14 15 syl122anc NA𝔼NB𝔼NC𝔼NAASegBCy𝔼NyBtwnBCAACgrBy
17 11 16 mpbird NA𝔼NB𝔼NC𝔼NAASegBC