Step |
Hyp |
Ref |
Expression |
1 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
2 |
|
btwntriv1 |
|- ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> B Btwn <. B , C >. ) |
3 |
2
|
3adant3r1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B Btwn <. B , C >. ) |
4 |
|
cgrtriv |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , A >. Cgr <. B , B >. ) |
5 |
4
|
3adant3r3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , A >. Cgr <. B , B >. ) |
6 |
|
breq1 |
|- ( y = B -> ( y Btwn <. B , C >. <-> B Btwn <. B , C >. ) ) |
7 |
|
opeq2 |
|- ( y = B -> <. B , y >. = <. B , B >. ) |
8 |
7
|
breq2d |
|- ( y = B -> ( <. A , A >. Cgr <. B , y >. <-> <. A , A >. Cgr <. B , B >. ) ) |
9 |
6 8
|
anbi12d |
|- ( y = B -> ( ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) <-> ( B Btwn <. B , C >. /\ <. A , A >. Cgr <. B , B >. ) ) ) |
10 |
9
|
rspcev |
|- ( ( B e. ( EE ` N ) /\ ( B Btwn <. B , C >. /\ <. A , A >. Cgr <. B , B >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) |
11 |
1 3 5 10
|
syl12anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) |
12 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
13 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
14 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
15 |
|
brsegle |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Seg<_ <. B , C >. <-> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) ) |
16 |
12 13 13 1 14 15
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Seg<_ <. B , C >. <-> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) ) |
17 |
11 16
|
mpbird |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , A >. Seg<_ <. B , C >. ) |