| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 2 |  | btwntriv1 |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> B Btwn <. B , C >. ) | 
						
							| 3 | 2 | 3adant3r1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B Btwn <. B , C >. ) | 
						
							| 4 |  | cgrtriv |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , A >. Cgr <. B , B >. ) | 
						
							| 5 | 4 | 3adant3r3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , A >. Cgr <. B , B >. ) | 
						
							| 6 |  | breq1 |  |-  ( y = B -> ( y Btwn <. B , C >. <-> B Btwn <. B , C >. ) ) | 
						
							| 7 |  | opeq2 |  |-  ( y = B -> <. B , y >. = <. B , B >. ) | 
						
							| 8 | 7 | breq2d |  |-  ( y = B -> ( <. A , A >. Cgr <. B , y >. <-> <. A , A >. Cgr <. B , B >. ) ) | 
						
							| 9 | 6 8 | anbi12d |  |-  ( y = B -> ( ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) <-> ( B Btwn <. B , C >. /\ <. A , A >. Cgr <. B , B >. ) ) ) | 
						
							| 10 | 9 | rspcev |  |-  ( ( B e. ( EE ` N ) /\ ( B Btwn <. B , C >. /\ <. A , A >. Cgr <. B , B >. ) ) -> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) | 
						
							| 11 | 1 3 5 10 | syl12anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) | 
						
							| 12 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 13 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 14 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 15 |  | brsegle |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Seg<_ <. B , C >. <-> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) ) | 
						
							| 16 | 12 13 13 1 14 15 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Seg<_ <. B , C >. <-> E. y e. ( EE ` N ) ( y Btwn <. B , C >. /\ <. A , A >. Cgr <. B , y >. ) ) ) | 
						
							| 17 | 11 16 | mpbird |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> <. A , A >. Seg<_ <. B , C >. ) |