Metamath Proof Explorer


Theorem seglemin

Description: Any segment is at least as long as a degenerate segment. Theorem 5.11 of Schwabhauser p. 42. (Contributed by Scott Fenton, 11-Oct-2013)

Ref Expression
Assertion seglemin ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐴 ⟩ Seg𝐵 , 𝐶 ⟩ )

Proof

Step Hyp Ref Expression
1 simpr2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
2 btwntriv1 ( ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 Btwn ⟨ 𝐵 , 𝐶 ⟩ )
3 2 3adant3r1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 Btwn ⟨ 𝐵 , 𝐶 ⟩ )
4 cgrtriv ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ )
5 4 3adant3r3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ )
6 breq1 ( 𝑦 = 𝐵 → ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐵 Btwn ⟨ 𝐵 , 𝐶 ⟩ ) )
7 opeq2 ( 𝑦 = 𝐵 → ⟨ 𝐵 , 𝑦 ⟩ = ⟨ 𝐵 , 𝐵 ⟩ )
8 7 breq2d ( 𝑦 = 𝐵 → ( ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ↔ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
9 6 8 anbi12d ( 𝑦 = 𝐵 → ( ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) ) )
10 9 rspcev ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ ( 𝐵 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ) )
11 1 3 5 10 syl12anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ) )
12 simpl ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ )
13 simpr1 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
14 simpr3 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
15 brsegle ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐴 ⟩ Seg𝐵 , 𝐶 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ) ) )
16 12 13 13 1 14 15 syl122anc ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐴 ⟩ Seg𝐵 , 𝐶 ⟩ ↔ ∃ 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝑦 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∧ ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝑦 ⟩ ) ) )
17 11 16 mpbird ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ⟨ 𝐴 , 𝐴 ⟩ Seg𝐵 , 𝐶 ⟩ )